
Journal of Engineering Mathematics, Vol. 13, No. 3, July 1979 
©1979 Sijthoff & Noordhoff International Publishers Alphen aan den Rijn 
Printed in the Netherlands 

249 

On the rectilinear motion of an inextensible string 

M. K U I P E R S  

Department of Mathematics, University of Groningen, Groningen, The Netherlands 

(Received February 1, 1979) 

SUMMARY 

In this paper we investigate the rectilinear motion of a string or chain with no bending stiffness, which is 
arranged in a straight line and bent double. We focus our attention on phenoinena which are virtually possible 
at the kink and examine two mechanisms, one of which is dissipative and the other is not. The results of our 
calculations are compared with analogous computations in the literature. 

I. Introduction 

Once a problem in mechanics has been solved, usually one tries to interpret the results from a 

physical point  of  view. In general findings conform more or less to what one expects. However, 

there are exceptions in which the analytical or numerical inferences are unexpected in a sense. 

In what follows we refer to two examples where such results arise from the application of  an 

improper model  to a problem. 

In his book,  Rosenberg [1] explains the crack of  the whip. He treats the latter as an 

inextensible uniform string with no bending stiffness which is arranged in a straight line and 

bent  double as shown in Fig. 1. The distance of  one end (subsequently we will call it the upper 

end) from some fixed datum is y and that of  the other end (the lower end) is x.  He assumes 

x = x  o - v t ,  (1.1) 

where v is a positive constant. The lower end thus moves uniformly to the right with a constant 

velocity. 

According to [ 1 ] under these circumstances the velocity j,  o f  the upper end increases beyond 

U y 

c I- I- L X=Xo-Vt 
F 

Figure 1. An inextensible uniform string arranged in a straight line and bent double. The lower part moves 
uniformly to the right with a constant velocity v. 
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all bounds, even if its initial velocity is zero. It would tend to infinity when the string stretches 

out completely. Thus a motion of the lower end to the right would induce a motion of the 
upper part as a whole to the left. Noting the inability of a string or chain to sustain a pressure 
force over a f'mite distance, an assumption usually made, we are tempted to believe that 
particles of the upper end of the string will stay at rest until they are transferred to the lower 
part at the kink. The same problem has been treated by Kucharski [2], who arrives at the same 
conclusion as Rosenberg. Moreover he presents a collection of solutions of similar problems 

again with findings which are rather curious, e.g. a tensile force applied to one end of a string 
lying at rest, automatically provokes a tensile force in the other end. 

In this paper we will consider two possible mechanisms which enable the apparent discon- 

tinuity of velocity of a particle passing through the kink. The first one is the most plausible 
mechanism, namely that of completely inelastic collisions between particles from the upper and 

the lower part. We will call this mechanism the dissipative model, and in the next section it is 
shown that this model accounts for what one expects to be the normal behaviour of a string or 
chain under various loading conditions. At any case the application of this model, which was 

not considered in [1 ] or in [2], removes the anomalies referred to above. The second model is 

non-dissipative and should be implemented by fitting a small circular disc at the kink. For a 
very small, but f'mite value of the radius r of the disc this allows for rapid, but continuous 

changes of the velocities of particles passing over it. This model, being somewhat artificial yet 

legitimate, has been considered in [2] as well. However, the conclusions arrived at in [2] do not 
agree with those we draw in Section 4. 

To conclude with we note that the authors of [3] treat similar problems, e.g. that of a chain 
falling from a pile of links. In fact they use the dissipative model, however, as they apply 

directly the principle of linear momentum to the entire system, they need not consider the 

dissipative force explicitly. 

2. The dissipative model 

Z 1 Calculation of  the dissipative forces 

Instead of considering the rheonomic problem of [1 ], we turn to a version somewhat more 
general. We suppose that the lower end of the string is loaded by a prescribed forceP(t) >~ 0 and 
the upper end by a force Q(t) >~ O, where t denotes time (Fig. 2). As before the string is 

L Y 

K r _-- o ( t )  
• --- (, | ,~ p ( t }  

K I_ x 
I- k , 

r 
Figure 2. An inextensible uniform string arranged in a straight line and bent double. The external forces are 
P(t) and Q(t). 
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assumed to be inextensible and to be unable to transmit pressure forces over a finite distance. 

Evidently this problem is scleronomic and has two degrees of  freedom in the Lagrangian 

formalism. As generalized coordinates we take the coordinates x and y depicted in Fig. 2. The 

distance z of the kink from the fLxed datum is 

i (£ + x  + y ) ,  (2.1) z = ~  

where £ is the constant length of the string. The length of the lower end is 

( t  - x + y ) ,  Z - - X =  (2.2) 

and that of the upper end is 

(~+x-y). z - y =  i (2.3) 

We assume that the two ends exert normal forces K on each other as indicated in Fig. 2. In the 

first instance the magnitude of K is unknown. In order to calculate it we have to distinguish 

two cases, viz. 

(2.4) 

and 

.9-  J¢ ~ 0, (2.5) 

where .2 and .9 denote the velocities of the two parts. The two cases are mutually exclusive 

unless 5c =.9. 
We first assume (2.4). According to (2.2) and (2.3) this means that the length of the lower 

end increases and that the upper part becomes shorter. In an interval of  time At a quantity of 

t / a ( 9 -  k)At, where # is the mass of the string per unit of length, is 1transferred from above mass 
to the lower part. Instantaneously its velocity changes from .9 to .2, so that the increase of 

1 momentum of that mass is - ~  # ~  - k)2At. This change is brought about by the force K 

exerted by the lower part on particles leaving the upper end. In view of the fact that this 

pressure force cannot be transferred by the upper part over a finite distance, it is absorbed 

locally by the quantity of mass which discontinuously changes its velocity. Equating the in- 

crease of  momentum and the impulse - K A t  yields 

1 . • 2 K = + i/a (.5' - .2) . (2.6) 

We note that the force K exerted on the lower end has to be considered as being the boundary 

value at z of  a normal tensile force distributed continuously throughout the lower part. 

It remains to prove that the two forces K together dissipate energy if.9 - .2 > 0. For that 
purpose we apply well-known formulae for the work dA done by the forces K in an interval of 

time dt 

dA = K  dt. ½ ( - . 9 -  ~c) + K..2dt = - ~ K ( . 9 -  ±)dt ,  (2.7) 
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The first term of the second expression represents the work done by the force K on particles 
leaving the upper end, and the second one refers to the work done by the lower K.  The single 
terms have no fixed sign, however, their sum is always negative a s p -  ~ >  0. Combining (2.6) 
and (2.7) we have 

1 dA = - g/a ~ -  j¢)3 dt. (2.8) 

Hence, in general there is dissipation of energy at the kink. 
The value of K in the case (2.5) follows from the preceding results. To this end we inter- 

change the symbols x and y, obtaining again the condition (2.4), and observe the change of sign 
of the forces K. In this way we find 

1 • • 3 p - k ~ < 0 ,  K = - { / a ( ~ - 5 c )  2, dA=+~la~-x )  dt. (2.9) 

2.2 Calculation of the generalized forces 

It is evident that the forces K are to be considered as impressed forces which contribute to the 
virtual work 8 ~ "  as a result of any virtual displacements 6x and 6y assigned to the system. 
According to the expression (2.7) for the real work dA, the expression for the virtual work 
8 ~ must have the following form 

1 1 6 ~ " = - i K  6 y + i K S x .  (2.10) 

Hence, the generalized forces Qx and Qy resulting from K are 

1 1 
Qx = + i K  and Q y = - ~ K .  (2.11) 

This is true irrespective of the sign of the relative velocity p - k. In this way we find using (2.6) 
and (2.9) 2 

p-~>/0, 

y-~<0,  

1 , 1 
Qx =+ g/1 (J ' -  ±) 2 Qy = -  ~/a ( j , - ~ )  2, (2.12) 

1 , 1 Qx = - ~ u ~ -  5c) 2 Qy = + ~/a (p -  ~)2. (2.13) 

Z3 The Lagrangian formalism 

We apply the Lagrangian formalism to the problem of Section 2.1 (Fig. 2). The following 
expressions for the kinetic energy T and the potential energy U are used 

T= ¼/a [ ( £ - x  +y)  5c 2 +(2 +x _y )p 2 ] ,  (2.14) 

U = P(t)x + a(t)y. (2.15) 

Journal of Engineering Math., Vol. 13 (1979) 249-256 



Motion o fan inextensible string 

I f j J -  5¢~> 0, then through the use of  (2.12) the Lagrangian equations become 

d t # (±2 p~)  = l 
d -7 - [~ la (£+x-y ) j q -a  - -~la([v -5c) 2 -Q( t ) ,  

_ _  1 d [-~ # ( ~ - x  +y)Sc] + ¼# (j¢2 _ j~=)=  + a t t ~  - k )  = -P ( t ) .  
dt 

253 

(2.16) 

Adding both sides of  these equations we obtain the balance of  linear momentum of  the entire 

system. From (2.16) we find 

1 
# (£ + x - y ) j )  = -O(t) ,  

1 1 
u (~ - x + y ) S e  = + ~ u Cv - ~c) 2 - e ( t ) .  

(2.17) 

The first equation shows that the normal force in the upper end at a cross-section just to the 

right of  the kink is indeed zero. The analogous force in the lower part is a tensile force ½/a(p - 

5c) 2, as was to be expected. These findings differ from those in [2]. I f £  = 0 andfi  = 0, then we 

have 

1 P(t )  = + ~ / s ~  - 5c) 2 and a ( t )  = 0. (2.18) 

As to the whip problem of Rosenberg, from (2.17) 1 we find for Q(t) = 0 the result 37 = 0, as 

long as the length of  the upper end £ + x - y > 0. Evidently the motion of  the upper end is 
uniform in time (whatever the motion of  lower part may be), and there are no velocities 

increasing beyond all bounds. 

2.4 A simple motion 

Finally we apply (2.17) to the following problem (Fig. 3). The motion sketched in Fig. 3 

developes if we apply a constant force P > 0 to the lower end, starting from a state of  rest in 

which the string is stretched out completely. We omit trivial calculations and only mention the 

following results: 

O < ~ t ~  ~ ,  

T = ~ P  t, 

x = £ - t  

U = - P  t, 

1 /  
5c = - V---~- ' K = P ,  Q = 0, 

so that T + 0 = - :  r p " 

(2.19) 

K--P ~=0 
,~ - ( --- Q = 0  1 ij,:~2 
K=P " x ~-P=2" 

Figure 3. A simple motion of the string possible if the dissipative model is applied. 
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The latter result agrees with the rate at which energy is dissipated by the forces K according 
to (2.8) 

dA = - i P dt .  (2.20) 

In passing we note that in a frame of reference moving with a velocity (2P//~)-~ to the right, 
which is also Galilean, the motion is transformed to that of a whip with o = 0 and the upper end 
moving to the left. 

The case p - 2 ~< 0 does not yield further insight into the behaviour of the'dlssipative model 
and hence can be left out of consideration. 

3. The non-dissipative model 

3. I The Lagrangian formalism 

, Of f )  

Y 

=P(t) 

Z 

Figure 4. An inextensible uniform string passing over a circular disc. The two ends and the centre of the disc 
execute a rectilinear motion as a result of the applied forces P(t) and Q(t). 

First we review the non-dissipative model proposed by Kucharski [2]. The usual assumptions on 

the motion of the string, viz. it is rectilinear and uniform, are retained. However, the conditions 

at the kink are different from those in the preceding chapter. At this point the system is 

assumed to be provided with a small circular disc over which the string passes. The disc can 

move in the same direction as the ends of the string, and in addition it rotates so that there is 

no slip between the disc and the string. In this way the local discontinuity of the velocity at the 

kink has been replaced by a rapid, but gradual change, at least as long as the radius r of the disc 

is finite. On this condition there is no dissipation. As before it is understood that the string 
cannot stand a pressure force. The limitations of this model follow readily from applying the 
Lagrangian equations to a simple motion. 

To this end we use the following expressions for the kinetic energy T and the potential U 

1 T =  ~/~ [ ( l ~ - I r r - x  +y)£¢2 + ( £ - T r r + x  _ y ) f 2  +rrr(~2 +p2)] ,  

U = P (t) x + Q ( t ) y ,  
(3.1) 
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where we have neglected the mass of  the disc. We note that there is no need to discriminate 

here between the conditions (2.4) and (2.5). The Lagrangian equations are found to be 

d l 1 1 
d---t [ : la (• - n r  - x + y )  Yc + : I~ 7rr )? ] + ~ ~ (~2 - p 2 )  = _ e ( t ) ,  

(3.2) 

d___~[:l 1 (~_Trr+x_y)p+:#Trrp]_~#(~2_p2)=_Q(t),l 1 

from which the balance of  linear momentum follows by adding both sides of  the equations. 

Reducing (3.2) we obtain 

1 
(~ x + y ) ) ?  + z u ( ~ - p ) 2 - P ( t ) ,  : l a  - = 

(3.3) 
1 1 : p (~ + x - y ) j )  = + ~ la (£c - ) ) 2  _ a ( t ) .  

It appears that the normal force in a cross-section of  the lower end just to the right of  the 

disc is 

1 1 /a (~ +j:)2 _ : p r)?, (3.4) 

and that in the upper part 

1 1 .. u 5') 5 (3.5) - - : # r y .  

If  we impose the condition that these forces must be non negative, then we find certain bounds 

for the maximal accelerations which can be allowed. For vanishingly small values of  r these 

results are to be compared with the analogous findings from (2.17). If)? = 0 and j~ = 0, then 

e ( t )  = I l p (~ - jO 2 and Q ( t )  = ~/a ()? - 502 , (3.6) 

and we observe the difference from (2.18). 

3.2" A s imple  m o t i o n  

We again consider the problem of  Section 2.4 (Fig. 5). 

Figure 5. 

. 

x 

A simple motion of the string possible if the non dissipative model is applied. 
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Suppressing trivial calculations we give the following results, valid for r --> 0, 

O <~ t <<, 

T = 2 P ~ t ,  

x = £ - 2 t ~ P ,  

U= -2PV~P t, 

2 =  -2V~--~P, 

so that J" + 0 = 0. Apparently there is no dissipation. 

Q=P(=  

M. Kuipers 

(3.7) 

4. Discussion and conclusions 

It follows from the preceding calculations that discriminating between the two possible models 

is by no means superfluous. According to Sections 2.4 and 3.2, the models behave differently 

under identical loading conditions and give rise to varying motions of the system. If we ask 
which of the two models simulates the real behaviour of the system best, we first have to settle 

whether either of the two can be applied in a certain class of problems at all. To amplify this, 
we compare (2.19) with (3.7), which both pertain to the simple motion during which p = 0 and 
the force P applied to the lower end is constant. As has been noted in Section 2.4, thismotion is 

equivalent to that occurring in the whip problem. Observing that the use of the non-dissipative 

model implies Q(t) > 0, we note that this condition is not complied with in [1] and [2] where 
the whip problem is considered. Hence, the related results contained in these references are not 

relevant to this problem. However, if the right-hand end of the upper part is a fLxed point, so 
that a tensile force Q can indeed develop, we are entitled to use either of the two models in the 
calculation of the problems of Section 2.4 and 3.2: neither is excluded beforehand. If we then 

compare (2.19) with (3.7) we see that, in order to impart one and the same velocity to the 
lower end, the driving force P must be twice as large in the case of the dissipative model as it is 

in the non-dissipative one. This result sounds plausible. For the rest it seems that the potential 
applicability of the non-dissipative model is less than that of the dissipative one. By its very 
properties the latter mechanism is automatically compatible with the uniform motion of the 
string. To enlarge the potential application of the non-dissipative model, we should for example 
no longer insist upon the uniform motion of the string, but allow for longitudinal vibrations. In 
the case of the whip, however, it seems that we cannot dispense with the flexural motion of the 
string. Rotary inertia has probably to be considered as well. 
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